Feedlot
yes

Benvenuti in Selko®. Questo sito è disponibile anche in italiano.

Benvenuti in Selko®. Questa pagina è disponibile anche in italiano.

Visita il sito Rifiuta

Bienvenido a Selko®. Este sitio también está disponible en español

Bienvenido a Selko®. Esta página también está disponible en inglés

Visitar la web Cancelar

Vítejte ve společnosti Selko®. Tyto stránky jsou k dispozici také v češtině

Vítejte ve společnosti Selko®. Tato stránka je k dispozici také v angličtině

Navštivte stránky Zrušit

Vítame Vás na Selko®. Táto stránka je k dispozícii aj v slovenskom jazyk.

Vitajte v spoločnosti Selko®. Táto stránka je k dispozícii aj v slovenskom jazyku.

Prejdite na webovú lokalitu Zrušit

Bem-vindo à Selko®. Este site também está disponível em língua portuguesa.

Bem-vindo à Selko®. Esta página também está disponível em português.

Visite o site Cancelar

Select your sector:

Minimizing the carbon footprint of beef cattle in feedlots

How can beef cattle feedlots improve sustainability of their operations?

Reducing the carbon footprint of beef cattle in feedlot environments is a multifaceted challenge requiring a blend of improved management practices, technological innovations, and strategic breeding programs for beef cattle.

Improving feed efficiency of beef cattle in feedlots

Enhancing the efficiency with which beef cattle convert feed into meat is crucial to reduce the amount of methane per kg of meat produced. Interventions with feed additives can result in significant improvements in feed efficiency of beef feedlot cattle. Trials18,19,20,21 have shown that Selko LactiBute improves hindgut health, resulting in an improvement of feed efficiency and health (See Table 1).

The source of trace mineral that is being used to meet the dietary requirements for trace minerals of feedlot cattle can also have an impact on feed efficiency of beef cattle in feedlots. Feeding Selko IntelliBond hydroxy trace mineral sources can improve both feed efficiency and average daily gain1,2,3,4,5,6,7,8,9,10,11,12,13,14.


Control Selko LactiBute P-value
Bodyweight day 3 416.8 kg 416.8 kg -
Bodyweight day 186 699.8 kg 706.8 kg ❮ 0.01
ADG, kg/head/d 1.52 1.56 ❮ 0.01
FCR 7.51 6.90 ❮ 0.01
Hot carcass weight, kg 418.4 kg 422.3 kg ❮ 0.06

Table 1: Average Daily Gain, Feed Conversion Rate and hot carcass weight of beef cattle fed a high-starch diet with or without Selko LactiBute

Genetic selection of beef cattle

Genetic selection can play a significant role in reducing the carbon footprint of beef cattle in feedlots15. Breeders can identify and propagate traits associated with better feed conversion rates. For instance, molecular breeding values (MBVs) can help in selecting cattle with enhanced feed efficiency and lower methane emissions15,17.

Optimizing the composition of beef cattle rations

Incorporating feed additives that reduce enteric fermentation can significantly cut down methane emissions from cattle. Research has shown that certain additives can significantly reduce methane emissions of beef feedlot cattle without negatively affecting animal health or productivity15. Additionally, using co-products from other industries, like dried distillers grains with solubles from ethanol production, can enhance feed sustainability by utilizing by-products that would otherwise be wasted16.

Advanced manure management in feedlots for beef cattle

Effective manure management of beef cattle manure can significantly reduce methane and nitrous oxide emissions from feedlots. Techniques include frequent waste removal, covering manure storage, and using anaerobic digesters to convert manure into biogas, which can be used to generate electricity. This not only reduces methane emissions from beef cattle feedlots but also offsets fossil fuel use15,17. Furthermore, integrating manure from beef cattle back into the soil as fertilizer enhances soil health and sequesters carbon, further mitigating the overall environmental impact of feedlot operations for beef cattle17.

Utilizing renewable energy in feedlot operations

Feedlot operations for beef cattle can adopt renewable energy sources such as solar or wind power to meet their energy needs. This reduces the reliance on fossil fuels and lowers the carbon footprint of the entire beef cattle operation. Moreover, implementing energy-efficient technologies in feed processing and transportation can further contribute to sustainability efforts15. It has been shown that the carbon footprint of producing ingredients for beef cattle feed can be different for each ingredient. The carbon footprint for production of Selko IntelliBond is low compared to e.g. the carbon footprint of producing sulphate trace mineral sources (see Table 2).

Product CO2 eq/Mt Product CO2 eq/Kg Metal % Metal
Selko IntelliBond® C 2.37 Mt 4.39 Kg 54%
Selko IntelliBond® Z 1.94 Mt 3.53 Kg 55%
Selko IntelliBond® M 2.53 Mt 5.75 Kg 44%

Table 2: CO2 equivalents per metric ton of Selko IntelliBond® produced and per kg of metal for Selko IntelliBond® C, Selko IntelliBond® Z and Selko IntelliBond® M

Policy and market incentives to reduce the carbon footprint of beef cattle operations

Government policies and market incentives can accelerate the adoption of practices to reduce the carbon footprint of beef cattle feedlot operations. Subsidies for renewable energy installations, grants for research into low-emission technologies, and carbon credit markets that reward low-emission practices can make sustainable beef production economically viable for producers17.

Reducing the carbon footprint of beef cattle feedlots requires a holistic approach

Reducing the carbon footprint of beef cattle in feedlot environments requires a comprehensive approach involving improved feed efficiency, advanced manure management, genetic advancements, renewable energy adoption, and supportive policies. By integrating these strategies, the beef industry can make significant strides toward sustainability and reduced environmental impact of beef cattle in feedlot operations.

Download more research and documentation

You can access all of our documentation about the science behind Selko products and services as well as Selko technical bulletins about ruminant challenges and technical product data sheets.

Picture of the whitepaper about Knowing the impact of the trace minerals in your feed on sustainability

Knowing the impact on sustainability of the trace minerals in your feed

Achieving animal nutrition sustainability objectives requires a team effort from the livestock nutrition supply chain to reduce the carbon footprint. Feed additives and improved farm practices can lower CO2 emissions. Life Cycle Assessments (LCA) validate these reductions. Download the PDF for detailed guidelines and strategies.

Register once and download all you need

This is not correct
This field is required
This is not correct
This is not correct.
This is not correct

Thank you for your interest in Selko

We have just sent you an email. Follow the instructions in this email to complete your download. Notice that In some cases, spam filters can block automated emails. If you do not find the email in your inbox, please check your junk email folder.

Have a nice day!

Connect with our experts

Navigating the daily operations of dairy and beef farming is challenging, and the transition towards sustainable practices raises numerous questions.

Selko ruminant specialists are dedicated to help you assess and address these challenges effectively. For personalized support and expert advice on achieving sustainable and profitable farming, get in touch with our team today.

This information is required
This information is required
This is not correct
  • United States
  • Canada
  • Afghanistan
  • Albania
  • Algeria
  • American Samoa
  • Andorra
  • Angola
  • Anguilla
  • Antarctica
  • Antigua and Barbuda
  • Argentina
  • Armenia
  • Aruba
  • Australia
  • Austria
  • Azerbaijan
  • Bahamas
  • Bahrain
  • Bangladesh
  • Barbados
  • Belarus
  • Belgium
  • Belize
  • Benin
  • Bermuda
  • Bhutan
  • Bolivia
  • Bosnia and Herzegovina
  • Botswana
  • Brazil
  • British Indian Ocean Territory
  • British Virgin Islands
  • Brunei
  • Bulgaria
  • Burkina Faso
  • Burundi
  • Cambodia
  • Cameroon
  • Cape Verde
  • Cayman Islands
  • Central African Republic
  • Chad
  • Chile
  • China
  • Christmas Island
  • Cocos (Keeling) Islands
  • Colombia
  • Comoros
  • Congo
  • Cook Islands
  • Costa Rica
  • Croatia
  • Cuba
  • Curaçao
  • Cyprus
  • Czech Republic
  • Côte d’Ivoire
  • Democratic Republic of the Congo
  • Denmark
  • Djibouti
  • Dominica
  • Dominican Republic
  • Ecuador
  • Egypt
  • El Salvador
  • Equatorial Guinea
  • Eritrea
  • Estonia
  • Ethiopia
  • Falkland Islands
  • Faroe Islands
  • Fiji
  • Finland
  • France
  • French Guiana
  • French Polynesia
  • French Southern Territories
  • Gabon
  • Gambia
  • Georgia
  • Germany
  • Ghana
  • Gibraltar
  • Greece
  • Greenland
  • Grenada
  • Guadeloupe
  • Guam
  • Guatemala
  • Guernsey
  • Guinea
  • Guinea-Bissau
  • Guyana
  • Haiti
  • Honduras
  • Hong Kong S.A.R., China
  • Hungary
  • Iceland
  • India
  • Indonesia
  • Iran
  • Iraq
  • Ireland
  • Isle of Man
  • Israel
  • Italy
  • Jamaica
  • Japan
  • Jersey
  • Jordan
  • Kazakhstan
  • Kenya
  • Kiribati
  • Kuwait
  • Kyrgyzstan
  • Laos
  • Latvia
  • Lebanon
  • Lesotho
  • Liberia
  • Libya
  • Liechtenstein
  • Lithuania
  • Luxembourg
  • Macao S.A.R., China
  • Macedonia
  • Madagascar
  • Malawi
  • Malaysia
  • Maldives
  • Mali
  • Malta
  • Marshall Islands
  • Martinique
  • Mauritania
  • Mauritius
  • Mayotte
  • Mexico
  • Micronesia
  • Moldova
  • Monaco
  • Mongolia
  • Montenegro
  • Montserrat
  • Morocco
  • Mozambique
  • Myanmar
  • Namibia
  • Nauru
  • Nepal
  • Netherlands
  • New Caledonia
  • New Zealand
  • Nicaragua
  • Niger
  • Nigeria
  • Niue
  • Norfolk Island
  • North Korea
  • Northern Mariana Islands
  • Norway
  • Oman
  • Pakistan
  • Palau
  • Palestinian Territory
  • Panama
  • Papua New Guinea
  • Paraguay
  • Peru
  • Philippines
  • Pitcairn
  • Poland
  • Portugal
  • Puerto Rico
  • Qatar
  • Romania
  • Russia
  • Rwanda
  • Réunion
  • Saint Barthélemy
  • Saint Helena
  • Saint Kitts and Nevis
  • Saint Lucia
  • Saint Pierre and Miquelon
  • Saint Vincent and the Grenadines
  • Samoa
  • San Marino
  • Sao Tome and Principe
  • Saudi Arabia
  • Senegal
  • Serbia
  • Seychelles
  • Sierra Leone
  • Singapore
  • Slovakia
  • Slovenia
  • Solomon Islands
  • Somalia
  • South Africa
  • South Korea
  • South Sudan
  • Spain
  • Sri Lanka
  • Sudan
  • Suriname
  • Svalbard and Jan Mayen
  • Swaziland
  • Sweden
  • Switzerland
  • Syria
  • Taiwan
  • Tajikistan
  • Tanzania
  • Thailand
  • Timor-Leste
  • Togo
  • Tokelau
  • Tonga
  • Trinidad and Tobago
  • Tunisia
  • Turkey
  • Turkmenistan
  • Turks and Caicos Islands
  • Tuvalu
  • U.S. Virgin Islands
  • Uganda
  • Ukraine
  • United Arab Emirates
  • United Kingdom
  • United States Minor Outlying Islands
  • Uruguay
  • Uzbekistan
  • Vanuatu
  • Vatican
  • Venezuela
  • Viet Nam
  • Wallis and Futuna
  • Western Sahara
  • Yemen
  • Zambia
  • Zimbabwe
This is not correct.
This information is required
This is not correct

Thank you reaching out!

Thank you for contacting us. Your form has been successfully submitted, and a confirmation email with further details is on its way to you. In the meantime, we invite you to explore more about our innovative solutions and best practices for sustainable dairy and beef farming on our website.

References

  1. Faulkner, M.J. and W.P. Weiss (2017). Effect of source of trace minerals in either forage- or by-product-based diets fed to dairy cows: 1. Production and macronutrient digestibility, Journal of Dairy Science 100:5358-53-67.
  2. Caldera, C.E, Weigel, B, Kucharczyk, V.N, Sellins, K.S, Archibeque, S.L, Wagner, J.J, Han, H, Spears, J.B. and T.E. Engle (2019). Trace mineral source influences ruminal distribution of copper and zinc and their binding strength to ruminal digesta. J. Anim. Sci., 97:1852-1864.
  3. Ibraheem, M, Kvidera, S. and B. Bradford (2021). Meta-analysis to determine the impact of trace mineral source on nutrient digestibility in dairy and beef animals. J. Dairy Sci. 104:97.
  4. Spears, J. W., E. B. Kegley, and L. A. Mullis (2004). Bioavailability of copper from tribasic copper chloride and copper sulfate in growing cattle. Anim. Feed Sci. Technol. 116:1-13.Spears et al., 2004. Anim. Feed Sci. Technol. 116:1-13.
  5. Shaeffer, G. L., K. E. Lloyd, and J. W. Spears (2017). Bioavailability of zinc hydroxychloride relative to zinc sulfate in growing cattle fed a corn-cottonseed hull-based diet. Anim. Feed Sci. Technol. 232:1-5.
  6. Wagner, J. J. , T. E. Engle, E. Caldera, K. L. Neuhold, D. R. Woerner, J. W. Spears, J. S. Heldt, and S. B. Laudert (2016). The effects of zinc hydroxychloride and basic copper chloride on growth performance, carcass characteristics, and liver zinc and copper status at slaughter in yearling feedlot steers. Prof. Anim. Sci. 32:570-579.
  7. Wagner, J., W. T. Nelson, T. Engle, J. Spears, J. Heldt, and S. Laudert (2019). Effect of zinc source and ractopamine hydrochloride on growth performance and carcass characteristics of steers fed in confinement to harvest. J. Anim. Sci. 97 (Suppl. 3):160.
  8. Caldera, E., J. J. Wagner, K. Sellins, S. B. Laudert, J. W. Spears, S. L. Archibeque, and T. E. Engle (2016). Effects of supplemental zinc, copper, and manganese concentration and source on performance and carcass characteristics of feedlot steers. Prof. Anim. Sci. 33:63-72.Budde et al., 2019. J. Anim. Sci. 97:1286-1295;
  9. Spears, J.W, Loh, H.Y, , Lloyd, K.E, Heldt, J.S, and T. E. Engle (2024) Trace mineral source and chromium propionate supplementation affect performance and carcass characteristics in feedlot steers. J. Anim. Sci. 102:1-8.
  10. Hilscher, F. H., S. B. Laudert, J. S. Heldt, R. J. Cooper, B. D. Dicke, T. L. Scott, and G. E. Erickson (2019). Effect of copper and zinc source on finishing performance and incidence of foot rot in feedlot steers. App. Anim. Sci. 35:94-100.
  11. Heldt, J. S. and M. S. Davis (2019). Effects of supplemental zinc source and level on finishing performance, health, and carcass characteristics of beef feedlot steers. App. Anim. Sci. 35:379-387.
  12. Heldt, J. S. and S. Davis. 2019. Effects of supplemental copper, zinc, and manganese source on growth performance and carcass characteristics of finishing beef steers. J. Anim. Sci. 97 (Suppl. 2):140-141.
  13. Heldt, J., B. Holland, A. Word, and K. Karr (2020). Effect of supplemental trace mineral source on performance, health, and carcass characteristics in finishing beef steers. J. Anim. Sci. 98 (Suppl. 4):157-158.
  14. Budde, A. M., K. Sellins, K. E. Lloyd, J. J. Wagner, J. S. Heldt, J. W. Spears, and T. E. Engle (2019). Effect of zinc source and concentration and chromium supplementation on performance and carcass characteristics in feedlot steers. J. Anim. Sci. 97:1286-1295.
  15. World Resources Institute. (n.d.). Reducing Emissions from Beef Production: Improving Practices and Technologies.
  16. Livestock Gentec. (n.d.). Part 3: GHG and the Beef Industry: Reducing the Environmental Impact in the Medium Term.
  17. The International Journal of Life Cycle Assessment. (n.d.). A life cycle assessment of the environmental impacts of cattle feedlot finishing rations.
  18. Sanz-Fernandez, M.V, Daniel, J, Seymour, D.J, Kvidera, S.K, Bester, Z, Doelman, J. and J. Martín-Tereso (2020). Targeting the Hindgut to Improve Health and Performance in Cattle, Animals, 10: 1817.
  19. Santos, A, Bergman, J.G.H.E, Manzano, J.A. and M. Hall (2023). Rumen protected calcium gluconate increases average daily gain of beef. Proceedings of the EAAP congress, Lyon, August 27-September 1, 562.
  20. Rossi, C.A.S, Grossi, S, van Kuijk, S and S. Vandoni (2024). Effect of the administration of a protected source of calcium gluconate on growth, feed efficiency, nutrient digestibility, and health in beef cattle. Proceedings of the ASAS, Calgary, July 21-25.
  21. Osman, Y., Koyun, E., Rowland, J., Lourenco, J., Baloyi, F.L., Fluharty, F., Pringle, T.D., Stewart, R.L., McCarthy, K., Griswold, K.E., and T.R. Callaway (2022). Impact of calcium gluconate feeding on intestinal microbial populations in a growing steer model. University of Georgia. Osman, Y., PhD Thesis.

Find out more about sustainable beef farming...