Chiudere / Cerrar / Zavřít / Zatvoriť

Choose your language:
Scegliere la lingua:
Elija su idioma:
Vyberte si prosím svůj jazyk:
Vyberte si svoj jazyk:
Angličtina ESPAÑA ITALIA Portugalština SLOVAKIA

Kompletní reference pro zdroje HealthyLife

# Writers Title Publication
1 Wangler, A, Blum, E, Böttcher, I. and P. Sanftleben (2009). Lebensleistung und Nutzungsdauer von Milchkühen aus der Sicht einer effizienten Milchproduktion. Züchtungskunde 81(5):341–360
2 Novaković, Z, Ostojić-Andrić, D, Pantelić, V, Beskorovajn, R, Popović, N, Lazarević, M and D. Nikšić, (2014). Lifetime production of high-yielding dairy cows. Biotechnology in Animal Husbandry 30(3):399-406
3 Steele, M. A, Penner, G.B, Chaucheyras-Durand, F. and L.l. Guan (2016). Development andphysiology of the rumen and the lower gut: Targets for improving gut health J. Dairy Sci. 99:4955–4966
4 Kvidera, S.K, Dickson, M.J, Abuajamieh, M, Snider, D.B, Sanz Fernandez, M.V, Johnson, J.S, Keating, A.F, Gorden, P.J, Green, H.B, Schoenberg, K.M. and L. H. Baumgard (2017). Intentionally induced intestinal barrier dysfunction causes inflammation affects metabolism, and reduces productivity in lactating Holstein cows. J. Dairy Sci. 100:4113–4127
5 Plaizier, J.C, Danesh Mesgaran, M, Derakhshani, H, Golder, H, Khafipour, E, Kleen, J.L, Lean, L, Loor, J, Penner, G. and Q. Zebeli (2018). Review: Enhancing gastrointestinal health in dairy cows. Animal 12(2):399–418
6 Sanz-Fernandez, M.V, Daniel, J, Seymour, D.J, Kvidera, S.K, Bester, Z, Doelman, J. and J. Martín-Tereso (2020) Targeting the Hindgut to Improve Health and Performance in Cattle. Animals 10:1817
7 Sundrum, A, (2014) Metabolic Disorders in the Transition Period Indicate thatthe Dairy Cows’ Ability to Adapt is Overstressed. J. Dairy Sci. 5:978-1020
8 Horst, E.A, Mayorga, E.J, Rodriguez-Jimenez, S, Abeyta, M.A, Goetz, B.M, Carta, S, Al-Qaisi, M, Kvidera, S.K. and L. H. Baumgard (2019). Causes and Metabolic Consequences of Leaky Gut. Department of Animal Science, Iowa State University.
9 Smith, G.L, Friggens, N. C, Ashworth, C.J. and M. G. G. Chagunda (2017). Association between body energy content in the dry period and post-calving production disease status in dairy cattle. Animal 11(9):590–1598
10 Putman, A.K, Brown, J.L, Gandy, J.C, Wisnieski, L. and L. M. Sordillo (2018). Changes in biomarkers of nutrient metabolism, inflammation, and oxidative stress in dairy cows during the transition into the early dry period. J.Dairy Sci. 101:9350–9359
11 LeBlanc, S.J. (2019). Review: Relationships between metabolism and neutrophil function in dairy cows in the peripartum period. Animal 14(1):44–54
12 Belić, B, Cincović, M, Lakić, I, Đoković, R, Petrović, M, Ježek, J. and J. Starič (2018). Metabolic Status of Dairy Cows Grouped by Anabolic and Catabolic Indicators of Metabolic Stress in Early Lactation. Acta Scientiae Veterinariae 46:1607
13 Gianesella, M, Perillo, L, Fiore, E, Guidice, E, Zumbo, A, Morgante, M. and G. Piccione (2018). Transition period in healthy and diseased dairy cows: evaluation of metabolic modifications. Large Animal Review 24:107-111 107-111
14 Probo, M, Bogado Pascottini, O, LeBlanc, S, Opsomer, G. and M. Hostens (2018). Association between metabolic diseases and the culling risk of high-yielding dairy cows in a transition management facility using survival and decision tree analysis. J. Dairy Sci. 101:9419–9429
15 Sasaki, O, Takeda, H. and A. Nishiura (2018). Estimation of the economic value of herd-life length based on simulated changes in survival rate. Anim Sci J. 90:323-332
16 van Dixhoorn, I.D.E, de Mol, R.M, van der Werf, J.T.N, van Mourik, S. and C. G. van Reenen (2018). Indicators of resilience during the transition period in dairy cows: A case study. J. Dairy Sci. 101:10271–10282
17 Bach, A, Terré, M. and M. Vidal (2020). Symposium review: Decomposing efficiency of milk production and maximizing profit. J. Dairy Sci. 103:5709–5725
18 Data from the ILVOFlanders Research Institute for Agriculture, Fisheries and Food. - Flanders Research Institute for Agriculture, Fisheries and Food.
19 Leal, L, (2019). Lifetime impact of early life planes of nutrition in dairy calves, Proceedings of Smart Calf Rearing Conference. University of Guelph. Canada, November 2-5
20 Römer, A, Bolt, A. and J. Harms (2020). One calf per cow and year – not a sensible goal for high-yielding cows from either an economic or an animal welfare perspective. J. Sustainable Organic Agric Syst 70(1):39–44
21 Hanks, J. and M. Kossaibati, (2019). Key Performance Indicators for the UK national dairy herd, A study of herd performance in 500 Holstein/Friesian herds for the year ending 31st August 2019. Thesis University of Reading
22 Schultz, K. K, Bennett, T.B, Nordlund, K.V, Döpfer, D. and N. B. Cook (2016). Exploring relationships between Dairy Herd Improvement monitors of performance and the Transition Cow Index in Wisconsin dairy herds J. Dairy Sci. 99:7506–7516
23 Young, A. (2002). Using records to evaluate production Utah State University
24 López, S, France, J, Odongo, E.D, McBride, R.A, Kebraeb, B.W, Alazahal, O, McBride, B.W. and J. Dijkstra (2015). On the analysis of Canadian Holstein dairy cow lactation curves using standard growth functions. J. Dairy Sci. 98:2701–2712
25 Berghof, T.V.L, Poppe, M. and H. A. Mulder (2019). Opportunities to Improve Resilience in Animal Breeding Programs. Front. Genet. 9:692
26 Fresco, L.O. and K.J. Poppe, (2016). Towards a Common Agricultural and Food Policy. WUR or
27 Suthar, V.S, Canelas-Raposo , J, Deniz, A. and W. Heuwieser (2013). Prevalence of subclinical ketosis and relationships with postpartum diseases in European dairy cows J. Dairy Sci.96:2925–2938
28 Overton, T.R, McArt, J.A.A. and D. V. Nydam (2017). A 100-Year Review: Metabolic health indicators and management of dairy cattle. J. Dairy Sci. 100:10398–10417
29 Berghof, T.V.L, Poppe, M. and H. A. Mulder (2019). Opportunities to Improve Resilience in Animal Breeding Programs Front. Genet. 9:692
30 Colditz, I.A. and B. C. Hine (2016). Resilience in farm animals: biology, management, breeding and implications for animal welfare Animal Production Science. 56:1961–1983
31 Elgersma, G.G, de Jong, G, van der Linde, R. and H. A. Mulder (2018). Fluctuations in milk yield are heritable and can be used as a resilience indicator to breed healthy cows. J. Dairy Sci. 101:1240–1250
32 De Vries, A, (2013). Cow longevity economics: The cost benefit of keeping the cow in the herd, Proceedings of the Cow longevity conference Hamra farm. Sweden, August
33 De Vries, A. - personal communication
34 Lin, Y, Sun, X, Hou, X, Qu, B, Gao, X and Q. (2016). Effects of glucose on lactose synthesis in mammary epithelial cells from dairy cow. BMC Veterinary Research 12:81, 1-11
35 Reinhardt, T.A, Lippolis, J.D, McCluskey, B.J, Goff, J,P. and R.. L. Horst (2011). Prevalence of subclinical hypocalcemia in dairy herds. Vet. J 188:122–124
36 Ghavi Hossein-Zadeh, N, and M. Ardalan (2011). Cow-specific risk factors for retained placenta, metritis and clinical mastitis in Holstein cows. Vet Res Commun. 35:345–354
37 Esposito, G, Irons, P.C, Webb, E.C. and A. Chapwanya (2014). Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows. Anim. Reprod. Sci. 30:144(3-4):60-71
38 Goff, J.P. (2012). Periparturient Immune Suppression: Causes and Effects in the Cow. Proceedings of the NAVC
39 Li, S, Khafipour, E, Krause, D.O, Kroeker, A, Rodriguez-Lecompte, J, Gozho, G.N. and J. C. Plaizier (2012). Effects of subacute ruminal acidosis challenges on fermentation and endotoxins in the rumen and hindgut of dairy cows. J. Dairy Sci. 95:294–303
40 Emmanuel, D.G.V, Madsen, K.L, Churchill, T.A, Dunn, S.M. and B.N. Ametaj (2007). Acidosis and lipopolysaccharide from Escherichia coli B:055 cause hyperpermeability of rumen and colon tissues. J. Dairy Sci. 90:5552–5557
41 Steele, M. A., J. Croom, M. Kahler, O. AlZahal, S. E. Hook, J. C. Plaizier, and B. W. McBride (2011). Bovine rumen epithelium undergoes rapid structural adaptations during grain-induced subacute ruminal acidosis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1515–1523
42 Faulkner, M.J. and W.P. Weiss (2017). Effect of source of trace minerals in either forage- or by-product-based diets fed to dairy cows: 1. Production and macronutrient digestibility. J. Dairy Sci. 100:5358-53-67
43 Watanabe, D.H.M, Doelman, J, Steele, M.A, Guan, L. and G. B. Penner (2020). Evaluating the effect of Ca-gluconate and Ca-butyrate on SCFA absorption and permeability of the gastrointestinal tract. J. Anim. Sci. Vol. 97, Suppl. S3.
44 McKnight, L.L, Doelman, J, Carson, M, Waterman, D.F. and J. A. Metcalf (2018). Feeding and postruminal infusion of calcium gluconate to lactating dairy cows. Can. J. Anim. Sci.
55 Doelman, J, McKnight, L.L, Carson, M, Nichols, K, Waterman, D.F. and J. A. Metcalf (2019). Post-ruminal infusion of calcium gluconate increases milk fat production and alters fecal volatile fatty acid profile in lactating dairy cows. J. Dairy Sci. 102:1274–1280
46 Watanabe, D.H.M, Doelman, J, Steele, M.A, and G. B. Penner (2018). Effect of rumen protected Ca-gluconate on the performance, gastrointestinal tract development, digesta composition and total tract digestibility of lambs. J. Anim. Sci. Vol. 96, Suppl. S3.
47 Watanabe, D.H.M, Doelman, J. and G. B. Penner (2020). The effect of intestinal Ca-gluconate and Ca-butyrate on ruminal short-chain fatty acid (SCFA) absorption and SCFA concentrations in the gastrointestinal tract of heifers. WDCS conference. March 10-13
48 Seymour, D, J, Daniel, J.B, Martín-Tereso, J. and J. Doelman (2020). Effect of fat-embedded calcium gluconate on lactation performance and metabolism in dairy cattle. J. Dairy Sci. 103, S1
49 Seymour, D.J, Carson, M, Daniel, J.B, Sanz, M.V, Martín-Tereso, J. and J. Doelman (2020). Effect of fat-embedded calcium gluconate on lactation performance in high-yielding multiparous dairy cows in a commercial dairy setting. ASAS conference. July 19-23
50 Seymour, D.J, Daniel, J.B, Sanz, M.V, Martín-Tereso, J. and J. Doelman (2020). Efficacy of fat-embedded calcium gluconate on lactation performance in dairy cattle. ASAS conference. July 19-23
51 Duffield, T. (2002). Impact, Prevention, and Monitoring of Subclinical Ketosis in Transition Dairy Cows. Proc. Minn. Dairy Health Confa
52 Oetzel, G.R. (2001). Herd-Based Biological Testing for Metabolic Disorders. Proc. Amer. Assoc. Bovine Pract. Conf.
53 Sjaunja,L.O, Baevre, L, Junkkarinen, L, Pedersen, J. and J. Setälä (1990). ) A Nordic proposal for an energy corrected milk (ECM) formula. Proc. 27th biennial session of the International Committee for Animal Recording (ICAR). Paris, France. Pudoc, Wageningen, the Netherlands: 156-157.
54 Hulsen, J, Aerden, D. and J. Rodenburg. (2014) Feeding Signals, a practical guide for feeding dairy cows for health and production. Roodbont Publishers B.V.
55 Sova, A. D., S. J. LeBlanc, B. W. McBride, and T. J. DeVries. (2013). Associations between herd-level feeding management practices, feed sorting, and milk production in freestall dairy farms. J. Dairy Sci. 96:4759–4770
56 Krawczel, P. and R. Grant. (2009). Effects of cow comfort on milk quality, productivity and behavior. NMC Annual Meeting Proceedings. 15–24
57 Koch, L.E. and G.J. Lascano. (2018). Milk Fat Depression: Etiology, Theories, and Soluble Carbohydrate Interactions. J Anim Res Nutr 3.
58 Drackley, J. K. and Cardoso F.C.(2014). Prepartum and postpartum nutritional management to optimize fertility in high-yielding dairy cows in confined TMR. Animal. 8(s1):5–14
59 Weigel, B, Kucharczyk, V.N, Sellins, K, Caldera, E, Wagner, J.J, Spears, J.W, Archibeque S.L, Fry, R. S, Laudert, S.B. and T. E. Engle (2017). Influence of trace mineral source on copper, manganese, and zinc rumen solubility and release from the insoluble portion of rumen digesta following a bolus dose of trace minerals in cattle. J. Dairy Sci. Vol. 100 E-Suppl. 2 (Abstr).
60 Spears, W, Kegley, E.B. and L.A. Mullis (2004). ) Bioavailability of copper from tribasic copper chloride and copper sulfate in growing cattle Animal Feed Science and Technology.116:1–13
61 Shaeffer, G.L, Lloyd, K.E, and J.W. Spears (2017). Bioavailability of zinc hydroxychloride relative to zinc sulfate in growing cattle fed a corn-cottonseed hull-based diet. Animal Feed Science and Technology. 232 (2017) 1–5
62 Caldera, E, Weigel, B, Kucharczyk, V.N, Sellins, K.S, Archibeque, S.L, Wagner, J.J, Han, H, Spears, J.W. and T. E. Engle (2019). Trace mineral source influences ruminal distribution of copper and zinc and their binding strength to ruminal digesta. J. Anim. Sci. 1852-1864.
63 Wilms, J, Wang, G, Doelman, J, Jacobs, M. and J. Martín-Tereso (2018). Intravenous calcium supplementation at calving induces fluctuations in circulating calcium and hypocalcemia when compared to voluntary oral calcium supplementation. Proceedings of the World Buiatrics Congress. August 28-September 1, 2018, Saporro, Japan.
64 Fowers, R, Navarro-Villa, A. and J. Martín-Tereso (2015). Effects on general health, energy status and calcium metabolism of a suspension of glucogenic precursors, vitamins and minerals supplemented to dairy cows immediately after calving Abstract. 8th International conference on Farm Animal Endocrinology. Billund, Denmark.
65 Kuijk, S. van, Klop, A, Goselink, R, and Y. Han (2019). Comparison of a voluntary calcium drink to a calcium bolus administered to dairy cows after calving. EEAP congress. Ghent, Belgium
66 Polsky, L. and M.A.G. von Keyserlingk (2017). Effects of heat stress on dairy cattle welfare. J. Dairy Sci. 100:8645–8657.
67 Wolfenson, D, and Z. Roth (2019). Impact of heat stress on cow reproduction and fertility. Animal Frontiers 9.1:32-38. genology
68 De Rensis, D, and R.J. Scaramuzzi (2003). Heat stress and seasonal effects on reproduction in the dairy cow--a review Theriogonolgy. 60(6):1139-51.
69 Koch, F, Thom, U, Albrecht, E, Weikard, R, Nolte, W, Kuhla, B and C. Kuehn (2019). Heat stress directly impairs gut integrity and recruits distinct immune cell populations into the bovine intestine PNAS 116(21): 10333-10338. Invited review: Effects of heat stress on dairy cattle welfare.
70 West, J.W, (2003). Effects of Heat-Stress on Production in Dairy Cattle. J. Dairy Sci. 86:2131–2144.
71 Sanchez, W.K. and M.A. Mcguire (1994). Macromineral Nutrition by Heat Stress Interactions in Dairy Cattle J. Dairy Sci. 77(7):2051-79.
72 Bernabucci U., S. Biffani, L. Buggiotti, A. Vitali, N. Lacetera, A. Nardone (2014) The effects of heat stress in Italian Holstein dairy cattle. J Dairy Sci 97: 471–486.
73 Dikmen S., P. J. Hansen (2009). is the temperature-humidity index the best indicator of heat stress in lactating dairy cows in a subtropical environment? J Dairy Sci. 92: 109–116
74 Hammami H., J. Bormann, N. M’hamdi, H.H. Montaldo, N. Gengler. (2013) Evaluation of heat stress effects on production traits and somatic cell score of Holsteins in a temperate environment. J Dairy Sci. 96: 1844–1855.
75 Allen J.D., L.W. Hall, R.J. Collier, J.F. Smith (2015) Effect of core body temperature, time of day, and climate conditions on behavioural patterns of lactating dairy cows experiencing mild to moderate heat stress. J Dairy Sci 98: 118–127.
76 Vitali A, Segnalini M, Bertocchi L, Bernabucci U, Nardone A, Lacetera N. (2009). Seasonal pattern of mortality and relationships between mortality and temperature-humidity index in dairy cows. J Dairy Sci. 92: 3781-3790.
77 Murphy M.R., C.L. Davis, G.C. McCoy (1983). Factors Affecting Water Consumption by Holstein Cows in Early Lactation. J. Dairy Sci. 66: 35–38.
78 Gorniak, T, Meyer, U, Südekum, K, and S. Dänicke (2014), Impact of mild heat stress on dry matter intake, milk yield and milk composition in mid-lactation Holstein dairy cows in a temperate climate. Arch. Anim Nutr. 68(5):358-69.
79 Thompson I.M., A P Alves Monteiro, G E Dahl, S Tao, B M Ahmed (2014). Impact of dry period heat stress on milk yield, reproductive performance and health of dairy cows. ADSA-ASAS-CSAS Joint Annual Meeting Kansas, USA.
80 Chamberlain, T (2015). The effect of heat stress on milking dairy cows in Britain. Society of Feed technologists, 1-10.
81 Horst, E.A, Kvidera, S.K, and L. H. Baumgard (2021). The influence of immune activation on transition cow health and performance—A critical evaluation of traditional dogmas. J. Dairy Sci. 104:8.
82 Ribeiro, E.S, Gomes, G, Greco, L.F, Cerri, R.L.A, Vieira-Neto, A, Monteiro Jr., P.L.T, Lima, F.S, Bisinotto, R.S, Thatcher, W.W, and J. E. P. Santos (2016). Carryover effect of postpartum inflammatory diseases on developmental biology and fertility in lactating dairy cows. J. Dairy Sci. 99:2201–2220.
83 Trevisi, E., Zecconi, A., Bertoni, G, and R. Piccinini, (2010). Blood and milk immune and inflammatory responses in periparturient dairy cows showing a different liver activity index. J. Dairy Res. 77: 310-317.
84 Omar, S.S, (2016). Aflatoxin M1 Levels in Raw Milk, Pasteurised Milk and Infant Formula. Ital. J. Food. Saf, 5(3): 5788.
85 Robinson, P.A, (2020). "They've got to be testing and doing something about it": Farmer and veterinarian views on drivers for Johne’s disease control in dairy herds in England. Preventive Veterinary Medicine, 182, article 105094.
86 Harm, J, (2008). Betriebswirtschaftliche Betrachtungen zur Lebensleistung und Nutzdauer von Milkküin Mecklenburg-Vorpommern. Mitteilungen der Landesforschungsanstalt für Landwirtschaft und Fischerei MV, Heft 40, ISSN 1618-7938, 89-102.
87 Bradley, A.J, De Vliegher, S, Green, M.J, Larrosa, P, Payne, B, Schmitt van de Leemput, E, Samson, O, Valckenier, D, van Werven, T, Waldeck, H.W.F, White, V. and L. Goby (2015). An investigation of the dynamics of intramammary infections acquired during the dry period on European dairy farms. MJ. Dairy Sci. 98:6029–6047.
88 Goff, J.P. (2008) Transition Cow Immune Function and Interaction with Metabolic Diseases. Proceedings of the Tri-State Dairy Nutrition Conference, April 22-23.
89 Kehrli, M.E, Nonnecke, B.J. and J.A. Roth (1989). Alterations in bovine neutrophil function during the periparturient period. Am. J. Vet. Res. 50:207-215.
90 Kehrli, M.E, Nonnecke, B.J. and J.A. Roth (1989) Alterations in bovine lymphocyte function during the periparturient period. Am. J. Vet. Res. 50:215-221.
91 Green, M.J, Green, L.E, Medley, G.F, Schukken, Y.H, and A.J. Bradley (2002). Influence of dry period bacterial intramammary infection on clinical mastitis in dairy cows. J Dairy Sci. 85(10):2589-99.
92 Rajala-Schultz, P.J, Hogan, J.S and K.L. Smith (2005). Short communication: Association between milk yield at dry-off and probability of intramammary infections at calving J. Dairy Sci., 88, pp. 577-579.
93 Odensten, M.O, Berglund, B, Persson-Waller, K, and K. Holtenius (2007). Metabolism and Udder Health at Dry-Off in Cows of Different Breeds and Production Levels. J. Dairy Sci. 90:1417–1428
94 De Prado-Taranilla, A.I, Holstege, M.M.C, Bertocchi, L, Appiani, A, Becvar, O, Davidek, J, Bay, D, Jimenez, L.M, Roger, N, Krömker, V, Paduch, J.H, Piepers, S, Wuytack, A, Veenkamp, A, van Werven, T, Dalez, B, Le Page, P, Schukken, Y.H, and G.J.Velthuis (2020). Incidence of milk leakage after dry-off in European dairy herds, related risk factors, and its role in new intramammary infections. J.Dairy Sci. 103, 10: 9224-9237.
95 Klaas, I.C, Enevoldsen, C, Ersbøll, A.K. and U. Tölle (2005). Cow-related risk factors for milk leakage. J. Dairy Sci, 88:128-136.
96 Ribeiro, E.S, Gomes, G, Greco, L.F, R. Cerri, L.A, Vieira-Neto, A, Monteiro Jr., P.L.J, Lima, F.S, . Bisinotto, R.S, Thatcher, W.W. and J. E. P. Santos (2016). Carryover effect of postpartum inflammatory diseases on developmental biology and fertility in lactating dairy cows. J. Dairy Sci. 99:2201–2220.
97 Bertulat, S, Fischer-Tenhagen, C, Suthar, V, Möstl, E. Isaka, N, and W. Heuwieser (2013). Measurement of fecal glucocorticoid metabolites and evaluation of udder characteristics to estimate stress after sudden dry-off in dairy cows with different milk yields. J. Dairy Sci. 96(6):3774-87.
98 Gott, P.N, Rajala-Schultz, P.J, Schuenemann,G.M, Proudfoot, K.L, and J. S. Hogan (2016). Intramammary infections and milk leakage following gradual or abrupt cessation of milking. J. Dairy Sci. 99:4005–4017.
99 Stelwagen, K, Phy , C.V.C, Davis, S.R, Guinard-Flament, J, Pomiès, D, Roche, J.R, and J. K. Kay (2013). Invited review: reduced milking frequency: milk production and management implications. J. Dairy Sci. 96 :3401–3413.
100 Zobel, G, Leslie, K, Weary, D.M, and M. A. G. von Keyserlingk (2013). Gradual cessation of milking reduces milk leakage and motivation to be milked in dairy cows at dry-off. J. Dairy Sci. 96 :5064–5071.
101 Trevisi, E, (2021), Virtual Global Dairy Talks Conference, April 21-23.
102 Ibraheem and Bradford, Michigan State University 2020, personal communication.
103 Oba, M. and M.S. Allen (1999), Evaluation of the Importance of the Digestibility of Neutral Detergent Fiber from Forage: Effects on Dry Matter Intake and Milk Yield of Dairy Cows. J. Dairy Sci., 99:589-596.
104 Garry, F.K, Bernie, D.J, Davie, J.C.S, and E. C.D. Pop (2021), Future climate risk to UK agriculture from compound events. Climate Risk Management 32: 100282.
105 Faulkner, M.J. and W.P. Weiss (2017). Effect of source of trace minerals in either forage- or by-product-based diets fed to dairy cows: 1. Production and macronutrient digestibility. Journal of Dairy Science 100:5358-53-67.
106 Horst, E.A., Mayorga, E.J, Al-Qaisi, M, Rodriguez-Jimenez, S, Goetz, B.M, Abeyta, A.M, Gorden, P.J, Kvidera, S.K. and L.H. Baumgard (2020). Evaluating effects of zinc hydroxychloride on biomarkers of inflammation and intestinal integrity during feed restriction. J. Dairy Sci. J. Dairy Sci. 103:11911-11929.
107 Habeeb, A.A, Gad, A.E, and M. A, Atta (2018). Temperature-Humidity Indices as Indicators to Heat Stress of Climatic Conditions with Relation to Production and Reproduction of Farm Animals. International Journal of Biotechnology and Recent Advances. 1(1): 35-50.
108 Whitlow, L. and W. Hagler (2005). Mycotoxins in Dairy Cattle: Occurrence, Toxicity, Prevention and Treatment Proc. Southwest Nutr. Conf. 124–138.
109 Fink-Gremmels, J. 2008. Mycotoxins in cattle feeds and carry-over to dairy milk: A review. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 25:172–180.
110 Kemboi, D.C, Antonissen, G, Ochieng, P.E, Croubels, C, Okoth, S, Kangethe, E.K, Faas, J, Lindahl, J.F, and J. K. Gathumbi (2020). A Review of the Impact of Mycotoxins on Dairy Cattle Health: Challenges for Food Safety and Dairy Production in Sub-Saharan Africa. Toxins 2020, 12, 222.
111 Kendall N.R, Holmes-Pavord, H.R, Bone, P.A, Ander, E.L. and S.D. Young (2015). Liver copper concentrations in cull cattle in the UK: are cattle being copper loaded? Vet. Rec, 177:493.
112 Sinclair, L.A. and N.E. Atkins (2015). Intake of selected minerals on commercial dairy herds in central and northern England in comparison with requirements. Journal of Agriculture Science. 153(04):743-752.
113 Wiebusch, A. T., M. L. Silveira, L. S. Caramalac, H. J. Fernandes, and J. D. Arthington (2015). Effect of copper, zinc, and manganese source on preferential free-choice intake of salt-based supplements by beef calves and precipitation-impacted metal loss. J. Anim. Sci. 93 (Suppl. s3):824.
114 Halasa, T., Nielen, M., De Roos, A.P.W., Van Hoorne, R, de Jong, G, Lam, T.J.G.M., van Werven, T and H. Hogeveen (2009). Production loss due to new subclinical mastitis in Dutch dairy cows estimated with a test-day model. J Dairy Sci. 92:599-606.
115 Hagnestam-Nielsen, C., Emanuelson, U., Berglund, B. and E. Strandberg (2009). Relationship between somatic cell count and milk yield in different stages of lactation. J Dairy Sci. 92(7):3124-3133.
116 Oetzel, G.R, Diagnosis and Management of Subacute Ruminal Acidosis in Dairy Herds (2017). Vet. Clin. North. Am. Food. Anim. Pract. 33(3):463-480.
117 Bell, A.W. (1995). Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation. J. Anim. Sci., 73: 2804-2819.
118 Piepenbrink, M. S., and T. R. Overton. (2000) Liver metabolism and production of periparturient dairy cattle fed rumen-protected choline. J. Dairy Sci. 83(Suppl. 1):257.
119 Heldt, J.S, Thomas, T, Hallmark, H, Tangredi, B, Gifford, R, Loh, H.Y, Crane, S, Thorndyke, M, Guimaraes, O. and T. Engle (2021). Effects of Renergy™ on ruminal fermentation in steers fed a high-grain diet. Annual meeting of the American Society of Animal Science, Abstract Poster.
120 Radünz, M, da Trindade, M.L.M, Camargo, T.M, Radünz, A.L, Borges, C.D, Gandra, E.A. and E. Helbig (2019). Antimicrobial and antioxidant activity of unencapsulated and encapsulated clove (Syzygium aromaticum, L.) essential oil. Food Chem. 2019, 276, 180–186.
121 El-Essawy, A.M, Anele, U.Y, Abdel-Wahed, A.M, Abdou, A.R. and I.M. Khattab (2021). Effects of anise, clove and thyme essential oils supplementation on rumen fermentation, blood metabolites, milk yield and milk composition in lactating goats, J. Dairy Sci. 217: 114760.
122 Silvestre, T, Räisänen, R.S, Wasson, D.E, Cueva, S.F, Lage, C.F.A, Wall, E.H, and A. N. Hristov (2021). Effects of rumen protected botanicals on lactational performance, methane emission, and blood metabolites of dairy cows, J. Dairy Sci. 104, Suppl. 1:318.
123 Silvestre, T, Räisänen, R.S, Cueva, S.F, Wasson, D.E, Lage, C.F.A, Martins, L.F, Wall, E.H, and A. N. Hristov (2022) Effects of a combination of Capsicum oleoresin and clove essential oil on metabolic status, lactational performance, and enteric methane emissions in dairy cows. J. Dairy Sci. 105.
124 Oh, J, Giallongo, F, Frederick, T, Pate, J, Walusimbi, S, Elias, R.J, Wall, E.H, Bravo, D. and A. N. Hristov (2015). Effects of dietary Capsicum oleoresin on productivity and immune responses in lactating dairy cows, J. Dairy Sci. 98(9):6327-39.
125 Oh, J, Harper, M, Giallongo, F, Wall, E.H, Bravo, D. and A. N. Hristov (2017). Effects of rumen-protected Capsicum oleoresin on immune responses in dairy cows intravenously challenged with lipopolysaccharide, J. Dairy Sci. 98(9): 1902-1913.
126 Oh, J, Harper, M, Giallongo, F, Bravo, D.M, Wall, E.H, and A.N. Hristov (2017). Effects of rumen-protected Capsicum oleoresin on productivity and responses to a glucose tolerance test in lactating dairy cows. J. Dairy Sci. 2017, 100, 1888–1901.
127 Oh, J, Harper, M. T, Melgar, A, Ott, T, Wall, E.H. and A. N. Hristov (2021). Dietary supplementation with rumen-protected capsicum during the transition period improves the metabolic status of dairy cows, J. Research 104(11):11609-11620.
128 Martins, L.F, Crater, S.E, Cueva, S.F, Silvestre, T, Stepanchenko, N, Wasson, D.E, Wall, E. and A. N. Hristov (2022). Effects of botanical preparations on lactational performance and enteric methane emission in dairy cows, J. Dairy Sci. 105, Suppl. 1:121.
129 Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A. and G. Tempio (2013). Tackling climate change through livestock – A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome.