Referencias sobre Selko IntelliBond Cr
1) Malik, M.I, Jonker, A, Raboisson, D, Song, B, Rashid, M.A. and X. Sun (2024). Effects of dietary chromium supplementation on blood biochemical parameters in dairy cows: A multilevel meta-analytical approach. J. Dairy Sci. 107: 301-316.
2) Leiva, T, Cooke, R.F, Aboin, A.C, Drago,F.L, Gennari, R. and J. L. M. Vasconcelos (2014). Effects of excessive energy intake and supplementation with chromium propionate on insulin resistance parameters in nonlactating dairy cows. J. Anim. Sci. 2014.92:775–782.
3) Caldera, C.E, Weigel, B, Kucharczyk, V.N, Sellins, K.S, Archibeque, S.L, Wagner, J.J, Han, H, Spears, J.B. and T.E. Engle (2019). Trace mineral source influences ruminal distribution of copper and zinc and their binding strength to ruminal digesta. J. Anim. Sci., 97:1852-1864.
4) Faulkner, M.J. and W.P. Weiss (2017). Effect of source of trace minerals in either forage- or by-product-based diets fed to dairy cows: 1. Production and macronutrient digestibility, Journal of Dairy Science 100:5358-53-67.
5) Miller, M.D, Lanier, J.S, Kvidera, S.K, Dann, H.M, Ballard, C.S. and R.J. Grant (2020). Evaluation of source of corn silage and trace minerals on lactational performance and total-tract nutrient digestibility in Holstein cows. J. Dairy Sci., 103:3147-3160.
6) Guimaraes, O, Jalali, S, Wagner, T, Spears, J and T. Engle (2019). The influence of trace mineral source on fiber digestion, rumen fermentation characteristics, and mineral solubility in beef cattle fed a low-quality forage diet. J. An. Science. 97, Issue Supp. 3: 167.
7) Guimaraes, O, Wagner, T, Spears, J and T. Engle (2020). Influence of trace mineral source on digestion, ruminal volatile fatty acid and soluble mineral on steers fed a dairy type diet balanced to meet requirements for a high producing lactating dairy cow. J. An. Science. 98, Issue Supp. 3: 133–134.
8) Caldera, C.E, Weigel, B, Kucharczyk, V.N, Sellins, K.S, Archibeque, S.L, Wagner, J.J, Han, H, Spears, J.B. and T.E. Engle (2019). Trace mineral source influences ruminal distribution of copper and zinc and their binding strength to ruminal digesta. J. Anim. Sci., 97:1852-1864.
9) Genther, O.N. and S.L. Hansen (2015). The effect of trace mineral source and concentration on ruminal digestion and mineral solubility. J. Dairy Sci., 98: 566-573.
10) Van Kuijk, S, Swiegers, P and Y. Han (2022), Hydroxychloride trace minerals improve apparent total tract nutrient digestibility in Bonsmara beef cattle. Livestock Science: 256(4):104820.
11) Yasui, T, Ryan, C.M, Gilbert, R.O, Perryman, K.R. and T. R. Overton (2014). Effects of hydroxy trace minerals on oxidative metabolism, cytological endometritis, and performance of transition dairy cows. J. Dairy Sci. 97: 3728-3738.
12) Daniel, J.B, Kvidera, S.K. and J. Martín-Tereso (2020). Total-tract digestibility and milk productivity of dairy cows as affected by trace mineral sources. J. Dairy Sci. 103 (10).
13) Parales-Giron, J, dos Santos Neto, J.M. and A. L. Lock, (2020) Supplemental palmitic acid and chromium propionate impact production responses during the immediate postpartum period in multiparous dairy cows. J. Dairy Sci. Vol. 104, Suppl. 1:148.
14) Yasui T, McArt J.A, Ryan C.M, Gilbert R.O, Nydam D.V, Valdez F, Griswold K.E. and T.R. Overton (2014) Effects of chromium propionate supplementation during the periparturient period and early lactation on metabolism, performance, and cytological endometritis in dairy cows. J. Dairy Sci 2014;97: 6400-10.
15) Hayirli A., Bremmer, D.R, Bertics, S.J, Socha, M.T. and R. R. Grummer (2001). Effect of Chromium Supplementation on Production and Metabolic Parameters in Periparturient Dairy Cows J. Dairy Sci. 84:1218–1230.
16) Vargas-Rodriguez, C.F, Yuan, K, Titgemeyer ,E.C, Mamedova, L.K, Griswold, K.E. and B. J. Bradford (2013). Effects of supplemental chromium propionate and rumen-protected amino acids on productivity, diet digestibility, and energy balance of peak-lactation dairy cattle J. Dairy Sci. 97:3815-3821.
17) Soltan, M. A. (2010). Effect of dietary chromium supplementation on productive and reproductive performance of early lactating dairy cows under heat stress. J. Anim. Physiol. Anim. Nutr. (Berl.) 94:264–272.
18) Sadri, H., G. R. Ghorbani, H. R. Rahmani, A. H. Samie, M. Khorvash, and R. M. Bruckmaier (2009). Chromium supplementation and substitution of barley grain with corn: Effects on performance and lactation in periparturient dairy cows. J. Dairy Sci. 92:5411–5418.
19) Smith, K. L., M. R. Waldron, J. K. Drackley, M. T. Socha, and T. R. Overton (2005). Performance of dairy cows as affected by prepartum dietary carbohydrate source and supplementation with chromium throughout the transition period. J. Dairy Sci. 88:255.
20) Bryan, M. A., M. T. Socha, and D. J. Tomlinson (2004). Supplementing intensively grazed late-gestation and early-lactation dairy cattle with chromium. J. Dairy Sci. 87:4269–4277.
21) Kafilzadeh F., Shabankareh H.K. and M.R. Targhibi (2012). Effect of chromium supplementation on productive and reproductive performances and some metabolic parameters in late gestation and early lactation of dairy cows. Biol. Trace Elem. Res. 2012;149:42–49.
22) Targhibi et al., (2012). Energy Metabolites, Lipid Variables and Lactation Performance of Periparturient Murrah Buffaloes (Bubalus bubalis) Fed on Diet Supplemented with Inorganic Chromium. Asian J. Anim. Vet. Adv. 7(11):1205-1211.
23) Rockwell R.J. and M.S. Allen (2011). Chromium propionate supplementation during the peripartum period interacts with starch source fed postpartum: Production responses during the immediate postpartum and carryover periods. J. Dairy Sci. 94: 738.
24) McNamara, J.P. and F. Valdez (2005). Adipose tissue metabolism and production responses to calcium propionate and chromium propionate. J. Dairy Sci., 88 (2005), pp. 2498-2507.
25) Terramoccia, S, Bartocci, S. and E. Lillini (2005). Milk yield and immune response of periparturient and early lactation Friesian cows fed diets supplemented with a high level of amino-acid chelated chromium Asian - Aust. J. Anim. Sci. 18:1098-1104.
26) Mirzaei, M. Ghorbani, G.R, Khorvash, M. Rahmani, H.R. and A. Nikkhah (2011). Chromium improves production and alters metabolism of early lactation cows in summer. J. Anim. Physiol. Anim. Nutr. 95:81-89.
27) Al-Saiadi, M.Y, Al-Shaikh, M.A, Al-Mofarrej, S.I, Al-Showeimi, T.A., Mogawer, H. H. and A. Dirrar (2004). Effect of chelated chromium supplementation on lactation performance and blood parameters of Holstein cows under heat stress. Animal Feed Science and Technology 117, 223–233.
28) Pechova, A, Podhorsky, A, Lokajova, E, Pavlata, L. and L. Illek (2002). Metabolic effects of chromium supplementation in dairy cows in the peripartal period. Acta Veterianaria Brunensis 71, 9–18.
29) An-Qiang, L, Zhi-Sheng, W. and Z. An-Guo (2009). Effect of chromium picolinate supplementation on early lactation performance, rectal temperatures, respiration rates and plasma biochemical response of Holstein cows under heat stress. Pakistan Journal of Nutrition, 8 (7): 940-945.
30) Bernhard, B.C., Burdick, N.C., Rounds, W., Rathmann, R.J., Carroll, J.A., Finck, D.N., Jennings, M.A., Young, T.R. and B.J. Johnson. (2012). Chromium supplementation alters the performance and health of feedlot cattle during the receiving period and enhances their metabolic response to a lipopolysaccharide (LPS) challenge. J. Anim. Sci. 90:3879-3888.