Desempenho leiteiro
yes

PT

Close
Chiudere / Cerrar / Zavřít / Zatvoriť

Choose your language:
Scegliere la lingua:
Elija su idioma:
Vyberte si prosím svůj jazyk:
Vyberte si svoj jazyk:
CZECHIA ESPAÑA Inglês ITALIA SLOVAKIA

Melhorar a imunidade dos animais através do gerenciamento de microminerais

Please click to accept the cookies for Youtube or you can watch the video on the Youtube channel.

Animais saudáveis para uma pecuária sustentável

A produção sustentável atende aos seguintes critérios:

  • Econômico: é eficaz e eficiente, ou seja, produz o alimento necessária para alimentar a população mundial de forma eficiente, gerando renda para o agricultor;

  • Lida com preocupações com a saúde pública, por exemplo, uso responsável de antimicrobianos, evitando dosagem farmacológica de minerais etc;

  • Aborda questões de bem-estar animal;

  • Tem um impacto mínimo no ambiente e nas alterações climáticas.

Todos esses critérios só podem ser atendidos com animais saudáveis. O manejo de microminerais pode melhorar a imunidade dos animais. Sandra Villagómez Estrada da Universitat Autonoma de Barcelona e Davi Brito de Araujo, Gerente do Programa Global de Microminerais na Trouw Nutrition apresentaram as mais recentes descobertas científicas sobre o impacto do gerenciamento de minerais na saúde e imunidade dos animais de fazenda.

Calcule seu lucro!

Veja como a produção leiteira sustentável resultará em mais lucratividade para sua fazenda

Em contraste com a crença comum, é muito possível administrar uma fazenda de maneira sustentável e ao mesmo tempo gerar uma renda saudável.

Calcule seu lucro influenciando os 4 indicadores-chave da HealthyLife que ajudam a melhorar o rendimento diário vitalício em sua fazenda.

Prevenção é melhor que a cura[1]. A nutrição de alta qualidade deve conter níveis corretos de microminerais e é essencial durante os quais são críticos para o animal como gestação, parto, transição, lactação, desmame, mudanças de manejo (vacinação, transporte, novos grupos, novas dietas) ou mudanças ambientais (calor estresse, ventilação, conforto).

Conclusão

Alimentar os níveis corretos e a quantidade correta de minerais pode ter um forte efeito positivo na saúde e bem-estar dos animais de produção.

As principais conclusões deste artigo

  • Um processo de inflamação sistêmica leva ao re-particionamento de nutrientes para o sistema imunológico;

  • O estresse oxidativo tem um impacto negativo na competência imunológica, crescimento e fertilidade;

  • Tanto a quantidade quanto a fonte do mineral que é fornecida pode ajudar a melhorar a imunidade e o desempenho;*

Referências

  1. Ducrot, C, Bed’Hom, B, Berinque, V, Coulon, J.B, Fourichon, C, Guerin, J.L, Krebs, S, Rainard, P, Schwartz-Cornil, I, Torny, D, Vayssier-Taussad, M, Zientara, S, Zundel, T. and T. Pineau (2011). Issues and special features of animal health research, Vet. Research. 42:96.
  2. Escobar, J, Van Alstine, W.G, Baker, D.H. and R. W. Johnson (2004).Decreased Protein Accretion in Pigs with Viral and Bacterial Pneumonia Is Associated with Increased Myostatin Expression in Muscle. Journal of Nutrition, 134:11, 3047–3053.
  3. Puppel K., Kapusta A. and B. Kuczynska (2015). The etiology of oxidative stress in the various species of Animals, a review. J. Science of Food and Agriculture 95, 2179-2184.
  4. Bailey R., West K.J., Black R. The epidemiology of global micronutrient deficiencies. Ann. Nutr. Metab. 2015:66:22–33.
  5. Hu, C, Song, J, Li, Y, Luan, Z. and K. Zhu (2013). Diosmectite-zinc oxide composite improves intestinal barrier function, modulates expression of pro-inflammatory cytokines and tight junction protein in early weaned pigs. Br. J. Nutr. 110(4):681-8.
  6. Liu, P, Pieper, R, Rieger, J, Vahjen, W, Davin, R, Plendl, J, Meyer, W and J. Zentek (2014) Effect of Dietary Zinc Oxide on Morphological Characteristics, Mucin Composition and Gene Expressionin the Colon of Weaned Piglets. PLoS One, 9, e91091.
  7. Schaaf, S, Carter, S.D, Cooper, C.V, Aparachita, P, Silva Lara, I, Shili, C, Perryman, K.R. and J. L. Usry (2018). Effect of Dietary Source and Concentrations of Copper, Manganese, and Zinc on Growth Performance and Immune Response of Nursery Pigs Following an Acute Lipopolysaccharide Challenge. J. Anim. Sci, 96, S2: 135–136,
  8. Haberl, B, Perryman, K.R. and J.L. Usry (2018). Effect of dietary mineral source on the clearance time of porcine epidemic diarrhea virus in the saliva of commercial gilts. J. Anim. Sci, 96, S2:120.
  9. Villagómez-Estrada, S, Pérez, J.F, van Kuijk, S, Melo-Durán, D, Karimirad, R. and D. Solà-Oriol (2020). Dietary Preference of Newly Weaned Pigs and Nutrient Interactions According to Copper Levels and Sources with Different Solubility Characteristics. Animals 10(7): 1133.
  10. Fry, R. S, Spears, J.W, Lloyd, K.E, O'Nan, A.T. and M. S. Ashwel (2012). Effect of dietary copper and breed on gene products involved in copper acquisition, distribution, and use in Angus and Simmental cows and fetuses. J. Anim. Sci, 91:861-871
  11. Lu N. and M. Lindemann (2018). Copper Levels and Sources for Sows. Proceedings of the 18th Annual Midwest Swine Nutrition Conference proceedings. 18: 21-28.
  12. Olukosi, O.A, van Kuijk, S.J.A. and Y. Han (2019). Sulfate and hydroxychloride trace minerals in poultry diets – comparative effects on egg production and quality in laying hens, and growth performance and oxidative stress response in broilers. Poultry Science, 98(10): 4961-4971.
  13. Horst, E.A., Mayorga, E.J, Al-Qaisi, M, Rodriguez-Jimenez, S, Goetz, B.M, Abeyta, A.M, Gorden, P.J, Kvidera, S.K. and L.H. Baumgard (2020). Evaluating effects of zinc hydroxychloride on biomarkers of inflammation and intestinal integrity during feed restriction. J. Dairy Sci. J. Dairy Sci. 103:11911-11929.
  14. Yasui, T, Ryan, C.M, Gilbert, R.O, Perryman, K.R. and T. R. Overton (2014). Effects of hydroxy trace minerals on oxidative metabolism, cytological endometritis, and performance of transition dairy cows. J. Dairy Sci. 97: 3728-3738.
  15. Hilscher, F. H, Laudert, S.B, Heldt, J.S, Cooper, R.J, Dicke, B.D, Jordon, J.D, Scott, T.L. and G. E. Erickson (2019). Effect of copper and zinc source on finishing performance and incidence of foot rot in feedlot steers. Appl. Animal Sci. 35:94-100.

Saiba mais sobre a gestão da transição...

Referências

  1. Ducrot, C, Bed’Hom, B, Berinque, V, Coulon, J.B, Fourichon, C, Guerin, J.L, Krebs, S, Rainard, P, Schwartz-Cornil, I, Torny, D, Vayssier-Taussad, M, Zientara, S, Zundel, T. and T. Pineau (2011). Issues and special features of animal health research, Vet. Research. 42:96.
  2. Escobar, J, Van Alstine, W.G, Baker, D.H. and R. W. Johnson (2004).Decreased Protein Accretion in Pigs with Viral and Bacterial Pneumonia Is Associated with Increased Myostatin Expression in Muscle. Journal of Nutrition, 134:11, 3047–3053.
  3. Puppel K., Kapusta A. and B. Kuczynska (2015). The etiology of oxidative stress in the various species of Animals, a review. J. Science of Food and Agriculture 95, 2179-2184.
  4. Bailey R., West K.J., Black R. The epidemiology of global micronutrient deficiencies. Ann. Nutr. Metab. 2015:66:22–33.
  5. Hu, C, Song, J, Li, Y, Luan, Z. and K. Zhu (2013). Diosmectite-zinc oxide composite improves intestinal barrier function, modulates expression of pro-inflammatory cytokines and tight junction protein in early weaned pigs. Br. J. Nutr. 110(4):681-8.
  6. Liu, P, Pieper, R, Rieger, J, Vahjen, W, Davin, R, Plendl, J, Meyer, W and J. Zentek (2014) Effect of Dietary Zinc Oxide on Morphological Characteristics, Mucin Composition and Gene Expressionin the Colon of Weaned Piglets. PLoS One, 9, e91091.
  7. Schaaf, S, Carter, S.D, Cooper, C.V, Aparachita, P, Silva Lara, I, Shili, C, Perryman, K.R. and J. L. Usry (2018). Effect of Dietary Source and Concentrations of Copper, Manganese, and Zinc on Growth Performance and Immune Response of Nursery Pigs Following an Acute Lipopolysaccharide Challenge. J. Anim. Sci, 96, S2: 135–136,
  8. Haberl, B, Perryman, K.R. and J.L. Usry (2018). Effect of dietary mineral source on the clearance time of porcine epidemic diarrhea virus in the saliva of commercial gilts. J. Anim. Sci, 96, S2:120.
  9. Villagómez-Estrada, S, Pérez, J.F, van Kuijk, S, Melo-Durán, D, Karimirad, R. and D. Solà-Oriol (2020). Dietary Preference of Newly Weaned Pigs and Nutrient Interactions According to Copper Levels and Sources with Different Solubility Characteristics. Animals 10(7): 1133.
  10. Fry, R. S, Spears, J.W, Lloyd, K.E, O'Nan, A.T. and M. S. Ashwel (2012). Effect of dietary copper and breed on gene products involved in copper acquisition, distribution, and use in Angus and Simmental cows and fetuses. J. Anim. Sci, 91:861-871
  11. Lu N. and M. Lindemann (2018). Copper Levels and Sources for Sows. Proceedings of the 18th Annual Midwest Swine Nutrition Conference proceedings. 18: 21-28.
  12. Olukosi, O.A, van Kuijk, S.J.A. and Y. Han (2019). Sulfate and hydroxychloride trace minerals in poultry diets – comparative effects on egg production and quality in laying hens, and growth performance and oxidative stress response in broilers. Poultry Science, 98(10): 4961-4971.
  13. Horst, E.A., Mayorga, E.J, Al-Qaisi, M, Rodriguez-Jimenez, S, Goetz, B.M, Abeyta, A.M, Gorden, P.J, Kvidera, S.K. and L.H. Baumgard (2020). Evaluating effects of zinc hydroxychloride on biomarkers of inflammation and intestinal integrity during feed restriction. J. Dairy Sci. J. Dairy Sci. 103:11911-11929.
  14. Yasui, T, Ryan, C.M, Gilbert, R.O, Perryman, K.R. and T. R. Overton (2014). Effects of hydroxy trace minerals on oxidative metabolism, cytological endometritis, and performance of transition dairy cows. J. Dairy Sci. 97: 3728-3738.
  15. Hilscher, F. H, Laudert, S.B, Heldt, J.S, Cooper, R.J, Dicke, B.D, Jordon, J.D, Scott, T.L. and G. E. Erickson (2019). Effect of copper and zinc source on finishing performance and incidence of foot rot in feedlot steers. Appl. Animal Sci. 35:94-100.